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ON T H E  F O R M A T I O N  OF T H E  D I S T U R B A N C E - F I E L D  S T R U C T U R E  

IN A T R A N S I T I O N A L  B O U N D A R Y  L A Y E R  

M. B. gel 'man and B. V. Smorodskii UDC 532.526 

In t r oduc t i on .  The nonlinear evolution of disturbances in boundary-layer flows is a determining factor 
of the laminar-turbulent transition (LTT). Weakly nonlinear theory has been developed [1, 2] to study the 
evolution of weak pulsations. This theory is based on the assumption of local proximity of the hydrodynamic 
field to the distribution formed by linear disturbances. Viscous effects dominate in this process. Nonlinearity 
introduces corrections of higher order (with respect to fluctuation amplitude), which can, nevertheless, change 
considerably the spectrum and amplification rates of these fluctuations. Weakly nonlinear theory ensures a 
successful interpretation of subharmonic S-transition phenomena. The latter occurs at low initial disturbance 
amplitudes. It is characterized by an outstripping growth of low-frequency, three-dimensional, Tollmien- 
Schlichting waves, in particular, subharmonic waves with respect to the wave revealed in the initial stage. The 
main mechanism involves nonlinear resonance interactions in wave triads [2-5]. 

The region of applicability of weakly nonlinear theory is rather limited. As the disturbance intensity 
increases, nonlinearity can play a dominant role in flow-field structuring. This occurs primarily in the critical 
layer (CL) of the wave, in which the phase velocity of the wave coincides with the local flow velocity. Along 
with the wall layer (WL), the CL region is of significance for the mechanism of energy exchange between the 
disturbances and the mean flow [6-10]. 

Three CL types are identified in accord with which effect is most pronounced: unsteadiness, viscosity, 
or nonlinearity. Their thicknesses are [10] 

It = 7 / a ,  I~, = (a  Re) -1D, IN ~- A 1/2, 

where a, A, and 7 are the typical wavenumber, amplitude, and increment of the wave, and Re is the Reynolds 
number. The region of applicability of nonlinear theory corresponds to the condition 1N << (It, lv) [10]. A 
change of the CL type transforms the pulsation field structure and the mean flow. The turbulization pattern 
becomes different. 

The evolution of quasi-periodic disturbances with various CL types has been successfully investigated 
in free shear layers [i1-13], where the CL behavior almost completely determines the wave energetics. The 
study of near-wall flows, for which the wall influence is essential, is more problematic. Solutions for neutral 
wave disturbances were constructed in [6, 7, 14]. Some aspects of variation of flow parameters in the CL 
vicinity were considered in [9]. A more detailed procedure for obtaining evolution ecluations was suggested in 
[8, 10]. The analysis in these papers, however, was based on a numbel of heuristic assumptions of a correlation 
between the amplitude growth rate and the wave shape, and was restricted to the case of a mono-harmonic 
disturbance whose CL is asymptotically far from a rigid boundary. 

The typical features of disturbances with nonlinear CLs revealed in [6-14] are intense generation of 
high-frequency harmonics, abrupt transformation of the vorticity pulsation field, and deformation of the mean 
profile in the CL vicinity. Apparently, these features affect the interaction efficiency of fluctuations of different 
wavelengths. In particular, they lead to parametric excitation of low-frequency background pulsations which 
play a determining role in the S-transition. This can lead to qualitative changes in the LTT scenario during 
the formation of a nonlinear CL regime. 
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In the present paper, we propose a method for analysis of the evolution of wave disturbances in plane- 
parallel flows of the boundary-layer type. This method is equally suitable in regions of linear, weakly nonlinear, 
and highly nonlinear flow evolution (free of restrictions on the type and position of critical layers of waves). 
Asymptotic averaging and matched asymptotic expansions were used for constructing solutions. The relative 
efficiency of parametric excitation of background subharmonic pulsations by a primary wave with linear and 
nonlinear CLs was studied. A decrease in the rate of parametric growth of subharmonics in the field of a 
strong wave was found. Threshold amplitudes for the formation of various types of transition in the boundary 
layer were estimated. It is concluded that the S- and K-transitions are related to regimes of weakly nonlinear 
evolution and nonlinear CL of the primary wave. 

M e t h o d  of Solving t h e  Evolu t ion  P rob l em.  Let us consider a plane-parallel flow of the boundary- 
layer type. The flow field is described by a nondimensional stream function r that obeys the equation 

0 - f i O A ~ + ~ , , ~ _  A 2 .  
g/Ar + ~ r  = 0, (1) 

where f i  = O(b/Oy, ~ = - O @ O x ,  (b = ~(y) + er  y, t), e << 1, and ~ and r refer to the undisturbed flow 
and the disturbance, respectively. 

Let us examine the evolution of quasi-harmonic disturbances 

1 0 I 
r = ~ r t) exp (iO,), O, = a ,z  - w,t, w,r 0-[r ~ # << 1. (2) 

Substituting (2) into (1) and averaging over fast phases [2, 5], we obtain 

{ } - } U" i ACs - ~e fS  -gJikhiS+k =- Qs, LCs=--" Afs  U - c s C S  = a ( U - c s )  (3) 

r = ~ r  = o (y -- o), rCs - r + ~ r  = o (y = y~), r = Cs (t = o), 

where U = dkO/dy; the prime denotes a derivative with respect to y. In this case, 

cs = , o s l a , ,  A r  = - a r  

O r  0 OA 0 O A r  0 OA 

2x 

h~'+k = ~ exp i ( O , - O ~ - O k ) d O .  

0 

With accuracy to 0(#,  e, Re -1), we obtain the Rayleigh problem 

Lr  C s = 0  ( y = 0 ) ,  F C s = 0 ,  Cs0=r 

whose solution is of the form 

Cs = Ajqalj(Y)6sj, 
1, s = j ,  

wj = ~o(o, i) ,  ~'J = o, s # j ,  

(4) 

where ~Olj -~- q01(y, C~j) and w(aj) are the eigenfunctions and eigenvalues that correspond to the wavenumber 
aj. It is assumed that the initial disturbance Cs0 is represented as a superposition of Rayleigh solutions, which 
below are distinguished by the subscripts i, j ,  and k. The subscripts s, r, and p correspond to waves whose 
phases are pulsations (Os = -t-0i + Ok 4- . . .) ,  and, hence, ws and as are not necessarily connected through the 
dispersion relation of the linear problem. 
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Introducing the normalization ~1 = ~/# and u = 1/Re/~ without loss of generality, we shall seek a 
solution of (3) in the form 

es = E /zmr m), d A .  
~=0 dt ,=.,=,E ~ p } m ) ,  (5) 

where r and p(m) are functions and operators that  take into account the distortion of primary Rayleigh 
waves (4). These distortions are caused by the unsteady, nonlinear, and viscous effects neglected in (4). It is 
convenient to distinguish the contribution fs made by singular regions to the s tream function. These regions 
are CLs in which (U(y) - cs) "} 0 as y ---} ys, and WLs, which ensure Oes/Oy = 0 (y = 0). Within these 
regions, expansion (5) is no longer regular. 

Outside of these layers, 

+ira) = f(m) + / ( , ) ,  ]i,n) = r + Wire), fiO) = r  Aj~USsj, ] i 0 ) =  O. (6) 

Here ](m) is a singular part  of the solution whose components  [(I)! m) and w! m)] are due to the CL and WL, 

respectively, and f(m) is a regular part of the solution, for which the system 

i {p(m)Aqolj(~js+ OATb(rn-1) -vA2r  =__0(m) 
Lf(m) -- a s ( U -  cs) #Ot Ts -~s , (7) 

f(s m) + ](s rn) 0 (y 0), F(f/rn)-+ ]!m)) 0, J(s m) E "['t'(rn--n) "h(n)'1"s 
n----O 

is valid. This  is equivalent to Lr (m) = Q~") + L5  "), r = 0, and rr  m) = 0. 
The no-slip conditions take the form 

0 (rn+l~ ~  + ,I,!")) + -r-~,w, �9 = o. (8) Oy ~ s oy 

Note that  the boundary  conditions for y = 0 in the form of (7) and (8) are valid if the CL does not lie on 
the wall (ys >> y = 0). Consequently, representation (6) holds. Otherwise, the conditions es  = Oes/Oy = 0 
(y = 0) should be used directly. 

We now solve problem (5)-(8). For long-wave disturbances (as << 1), the system of fundamental  
solutions of the Rayleigh equations can be represented by the Heisenberg functions ~o~s(y) and ~o2s(y): 

~Ols : ~Ol(V, O~s)= ( U -  C s ) ( U _ c s ) 2 + O ( o t 2 ) ~ - -  + - -  + 7771n - g s ,  
o /Is U~ (9) 

~2s = v2(v, o,s) = ( u  - cs) + o ( ~ ) .  

Here 

as = (U - cs) 2 z2s + "777--(]1s zs dzs; 
--YS 

From (7) we obtain (outside the CL regions) 

Y 
r : {~o,,(y)f~:s(Q!m)+ L]J"))dy-~2s(y) 

0 

Us = U ( y s ) = c s ;  z s = y - y s .  

Y 

0 
(10) 

where V~ = ~lsdq~2s/dy - qo2sdqols/dy is the Wronskian of the system. 
For m = 0, Eqs. (7) reduce to (4). The condition q01s = 0 (y = 0) is fulfilled automatically, and the 

boundary condition on yoo for s = j ,  

1 U o - c j ( 1  1 U~'ln z j ) O, (11) 
r ~ , j  = Uo - cj ~ @ + -y~ + ~u~ ~ - gj = 
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[U0 = U(y~)] establishes the dispersion relationship w 1 = w(aj) .  
For s = j from (I0) with allowance for ~ j ( 0 )  = F~Olj = 0, we obtain solvability conditions for system 

(7): 
yoo yoo 

/ ~ I j ( Q ~  =)  + L/~m))dy = / ~oljQ~ .m) dy +/~=)(t ,  yoo ) 

o o 
yoo yoo 

= 0 .  
(12) 

] ~Olj(Q~ m, -~- L/~m))dy = / ~OljQ~ rn, dy +/~m'(t ,O).  
o o 

They establish a correlation between the operators p(m) and the functional values of the functions r 
determined in previous orders. Then,  (5) leads to an evolution equation for Aj(t). (Note that  the second 
equation of (12) is valid only for ys >> 0.) 

As noted above, ](m) __ a singular part of the solution - -  i~ due ~,o the CL and WL. 
Isolated CLs arise in the vicinity of y ,~ ys due to singular terms on the r ight-hand side of (7) of the 

form 

Q, ~ a . ( u  - ~ ) - "  + a ~ , ( u  - ~ ) - m  + . . .  

[ars(Y, t) are regular functions] and lead to the corrections 

o!m) = ~_,(B!7)(t)~q, + D!7)(t)~o2~)" (13) 
r 

Here p(m) and t~(m) ~rs ~'rs can take various values above and below the CL region (y ~_ yr): 

ABST) = B(m) 0 B (m) = r 0, AD!s m) = D (m} D (m) rs yr-t- ~ rs yr--o rs yr+O -- rs yr--U # O. 

The WL influence function w (m) corresponds to the decreasing (with derivatives) solution w! m) ~ 0 
(y --* yoo). With allowance for that ,  (12) takes the form 

yoo yco 
f~o , jQJ .m 'dy+~_D!; )  I =0, f~,jQJ.'n) d y + ( ~ .  D~'~)+w(.m')l =0,  (14) 

r yoo 3 / ly----0 
0 0 

or, what is the same, 
yoo 

]  ,JQ m)dY = (t' ~ ) - E , 
0 r 

where the integral is taken in the sense of the basic value (except for regions containing singularities). 

It is obvious from (5) and (14) that  dAj/dt, along with the terms O(~, Re -1, w~-m)(0, t)), is determined 

by the magni tude of the j u m p  A D ~  ) ~ DAyr, which is of the order of the CL thickness Ayr. A parameter 
# can then be introduced as a characteristic of the LC thickness: tt ~ maxr Ayr. 

We now determine ws. We introduce formally internal variables r I = rlj = zj/#.  Equation (1) for the 
stream function r  7/, ~') takes the form 

"'t 0 -2 ,'O~ O 
(,0. 

0 2 2 2"0(/, 0 3 
Oq Oz 3 (15) 

Here ~ = (Re #3)--1, T = "~t, ~'~ -- 02?fi/0T/2, and 7 = I Oln O/Ot I is the unsteadiness parameter .  
According to (6), outside the CL, 

= k~ + e Y ~ A k ~ l k e x p ( i O k )  + e # ( f  (1) + (I }(1) + R j(1)) "~ O(G2, ~ 2 , G / ] )  
k 

(x6) 
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and w(U is found from the equation 

{~0_~+  U - cj ~2 gOXl + 2 '~ -0 E ( Im AkqalkeiAOk ) ~--~ -- )~ 02 '~(wl' = 0 ,  (17) 
# Oxl k 0'72 J 

where xl = x - cjt, AOk = A a k x  -- Ackt, A(a}, c}) = (ak, c}) -- (aj, cj), and 

Ivoo - yj l  02 w (o = f ~ ) ,  f ~ ) ,  tgf~ (1)~ --~ 0 for r/ 
Or/2 Or/ " ] # 

For Yk >> #, the wall condition is 

= _(fO) + (1)(1)), LW (I) = Of(~ -' W(I) 
07 or/ 

The subsequent orders ~/z n are determined from inhomogeneous equations wherein the basic operator 
coincides with (17). 

To determine the coefficients (B, D)!~ ) and @(m), one should solve the problem in internal CL regions. 
The standard procedure of matched asymptotic expansion is used [7, 12]. Equations for r = r r/, x) 
within the CL (lY - Yk[ < AYk) coincide in form with (15); the boundary condition is the expansion of r (16) 
for [y - Ykl ~ 0 in the variables r/k = zk/I.t [(b ---* ~biN(Irlkl " -+ O())]. 

For Ys " # (the CL is on the wall), the conditions at y = 0 (r/s = -Ys /P)  do not allow the separation 
into "responses" (6), and, instead of matching with r as r / ~  -oo ,  they should be written in the general form 
e w  = Or = 0 (y = 0). 

The iterative procedure considered above has a self-consistent character and allows one to describe the 
evolution of two-dimensional wave disturbances with an arbitrarily specified accuracy by solving the system 
(7), (12), (15), and (17). The CL type and its position relative to the wall do not impose restrictions on the 
method. The procedure is readily extended to the case of spatial-temporal evolution of three-dimensional 
w a v e s .  

E v o l u t i o n  of  M o n o - H a r m o n i c  D i s t u r b a n c e .  To illustrate the above method and make a 
comparison with the previous results, we study in more detail the evolution of an isolated wave. 

In this case, j = 1, and from (2) and (5), taking into account the uniqueness of the CL, we obtain 

r = ~ y]~ #me!m)exp(iOs), dA ~ #, ,p(m),  (18) 
= m = l  s = 0  m = 0  

, = 0 , 1 , 2 ,  . . . .  

We consider the case # << yl (the CL is asymptotically far from the wall). From (9) follows the recurrent 
systems 

= 0, r : I ~  = o, 

for m = 0 and 

Lf~ 1) = Q ~ ' ) -  iU"cpne O) Fr 

f~~ 0 ) =  0, o-~f~~ # 0 

O o_, = 0, ~bll)(t,0) ---- 0, ~yy]~0) + W (1) 
Oy" 1 

j~i) 
L f ~ O = Q ~ l ) = i e 1 2 a ( U _ c ) ,  F f ~ l ) = 0 ,  f~l)(t,0)----0 

(19) 

= o (v = 0); (20) 

(21) 

for m----~ i. 
The correction to the mean flow f~l) that arises in this order of expansion is determined only in the 

next approximation (since j~l) = s0 = 0). 
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For m = 2, we have 

Lf}2) = ot(V - c) U - c + - ~1 - / 2 0 t  w l U - 

r~[2)=0, r ) 0 . ( 1 ) r  /2~2)) 0 = ~ , , 1  + + = (v = 0) ,  

= J21  (1) (0)] = j}~) j io ( :~1) , : }  ~ + _ (:: ,:'_'.,, :. :-,; 

i 0A fO) 

•f2(2) __0 , r (9 ,r /2W~ 2)) 0 (y 0); = ~ y ( J 2  + + = = 

LfJ')-  3~(0= ~' c)JJ2)' r:} ~) = 0, :}~)(t,0) = 0. 

The equation for f(i)  follows from the condition Q~2) < oo and can be written as 

(9 02  '~ 02 r(1) 81j~2)  eldlAI2 0/'U"l~,nl2'~ 

(22) 

(23) 

(24) 

(25) 

with allowance for Lf~ 1) = Lw~ 1) << Q~I) (y • 0). From (25), for y > ( t /Re)1/2 we obtain the relation 

0 e(1) 0 2u"koul 2 ~y~o = e ~ l A I  ~-_--~ +const, 

which is asymptotic for f(D as y -* oo. 
The correction f~2) is determined from similar reasoning for equations ,,~/23. The problem of determining 

r for an isolated CL has been considered previously in [1i, 12]. 
Thus, the solution outside the CL has the following form with accuracy to 0(/23): 

= ~I/+ eACPll e/el + ~/2{(f~l) + wil) + B[1)~Oll + Dil)cP21) e/el + f61) e2i01 + fo(1)} 

+,/22((f}2) + w~2) + a[2)cP11 + D12)~21) eiO, + (f(2) + w~2) + B~2)cp12 

+D~2)~22) e2i01 .jr_ (f0(2) + Wh2) + (i)(02)) + f}2) e3i01 } + 0(~:/23), (26) 

where 
y y 

0 0 

[see (10)], w! m), B! m), D! m), and +~,n) are determined by solving the internal equations (15) and (17). Formula 
(14) leads to the amplitude equation 

o 

The terms under the integration sign are due to the contribution of effects from regions outside the CL. 
To determine the internal solutions r in the CL, we use a standard procedure of the method of matched 
asymptotic expansions. For this purpose, we expand r into a series for Izl = lY - Yll << 1, pass to the internal 
variables q = z /# ,  and collect terms of the same order with respect to the parameter #. 
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The resulting relation is the boundary condition for (15): 

, . .  { 2 U~ 2 ~ eA i01 c (b = #Crl + # -~rl + + . . .  "~c e 1+ "--~crl - a  # lnA 

+/z[~ ' , r l ln l r / l+r t  ~ - g '  + ~ -  1 -= In l r l l  -~r  A 

+lu2 in A (U:'~I~') "3U': y~.)) ( ' o" 
- ~ ( , 7 ~ + g l -  , 7 + ;  ~I,? U;o"~" - - Z  ~ " - 7  ~ 

-B~') 'llnl'71+~'~(')(1---")-<"71nl'71(,~--~-c ' + , ' - A ' - ' I  Y, }+O(e2#,u#). (28) 

Here A = ~ ' IY , ,  o = ( i U " l < ~ U : 3 ) ( d A I A d t ) ,  Uo = U(y,), and B~ ~) and DI ~) can take various values above and 
below ;he CL. Then, the solution r for the internal equation (15) can be represented as 

City =/z2(X1 +/~ In #X2 +/~X3 + / z2 In #X4 + . . . ) ,  (29) 

where X] U~r12/2 eAexp(iOi)/(#2U~), X2 eAexp(iOi)/(#2U~)( ~r " ' = - = -flU"/U'c), and X3 is found from the 
equation 

("/ 0 , 0 eOl ~ 02 ~ 02 
LX3- "fi-~r+U'cq-~+2-ff-~U~cIm(aexp(ia()) - )~--~2 ~ X 3  = 0 (30) 

[ X3 - U~lr#36 eAexp(iOl)(Iniqi(Uu~cllclT-~ U~ti 2 yl 

UIcB~ 1) w~l)u;} ] 
-} A a A (I . I  -" • ) ,  ~ = = - c t .  

The efficiency of contributions due to unsteady, nonlinear, and viscous effects, which determines the CL type, 
is determined by the relative values of the corresponding terms (7]#, el# 2, and A). 

Taking into account the structure of boundary conditions (30), we easily obtain AB~ I) = 0. The value 
of 

B~I) = imB~l) --d-tA~-~clt-U-~cld. 1 /Uc" 1 = +--y - g l ]  (31) 

can be found without solving the internal problem and by integrating Eq. (30) with respect to q. In the next 
order, 

" "3U"  1 \  B ! I ) \  e U~'Aexp(iO,) ( ~ (  
X4 = .2 ec t q _ _7~r  "}- gl - 71 ) - - -A--)"  (32) 

A solution for X5 is found from 

[ ~A exp(iO1){g~q 2 UtCD(1,. 1)U" LX5 = - iU;qsAa/# 2 X, = ~2---'~t c - ~ 1 "t "~ BI =~-qlnlql 

~'71n Irll 777-+91- + 6 ]  (33) A k, yl 2 U~ ~'1 " 

Using (28), we can express AD~ 1) r 0 in terms of the integral of CL vorticity: 
+co 

<~---~b(t,x, o c ) -  ~--~(b(t,z,-oo)) =e#2AD~l) = ( f f~dq>, (34) 
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I f2r 02 
<...) = / . . . d o ,  a = 

0 

Formula (34) is valid if w0) does not contribute to the jump value 0 r  the CL. The latter follows 
explicitly from Eq. (17), which, for y -~ Yl, is automatically transformed to (30): LO2wO)/cOq 2 = 0. Note 
that for 02W(1)/Orl 2 as y 0 the WL characteristic scale changes (U~r/ ' " " " ~ -U~yl//A), and inertial and vmcous 
terms in (17) become comparable: U~ylO2wO)/Oy 2 ~, ApO4wO)/Oy 4 for y,,-  Re -1/2. Substantial nonlinearity 
is observed only if eA ,~ 1: 

~011 ": y ,  UtcYl 02w(1) . 03W (1) 
Oy ~ ,,~ sAy Oy a . 

Maximum contribution of this effect to the WO) distribution is observed within the CL and decreases 
at its periphery ~q-1/2.  The influence of the region y ,-~ yx on w~ 1) can be considerable even for p << yl [14]. 
In the case yl >>/A >> Re - I D ,  the CL effect on the formation of w(D can be ignored, and Eq. (17) for ,7 > - A  
takes the form 

Or/2 
0 

Under restrictions (34) and (35), the increment equation (27) coincides with that  obtained in [8, 10]. 
It is easy to show that  the proposed method is related to the "flexible wall" model [8, 9, 14]. Designating 

F = A~Oll +/A(f~l) + (i)il)) and taking into account that Awl 1) ~ 02wil)/Oy 2 + O(a  2) from the boundary 
conditions for y = 0 

O F Ow(1 ) { 0 W(I) ,~ /A_l) ' 
F = o, oy + ' %  ' = o(/A) , 

we obtain 

I O F " ~  = }  / 7 }  

0 0 0 

(36) 

Equation (36) coincides with that used in [9, 14] up to designations. The accuracy of this model can 
be estimated using the method proposed. 

Until now we considered an isolated CL (A << 1). For A ,-~ 1, the flow region near the wall (y ~< yl) 
is not external. Solutions there should be constructed within the framework of internal equations (15) with 
the boundary conditions ~biN = O~biN/Or I ---- 0 (r/ ---- - A  - i )  and (28) (q ~ oo). With allowance for A ~ 1, 
expansion (28) acquires the form of a power series (the terms ~ # "  In # drop out)'  

~b pCq + # z  772 eAexp(iOa) , . , .  s (1 + A~) +/As uS. eAexp(iOa) U'g U'c' 
= 6 /A'U c "  , q - cr In A + -~[T/In ]q] 

' U'w(,) 1} - ~ U c t ~ ( D - a ( l + A r / ) l n ] r / [ - c r - ' -  X 1 +ar/AlnJA] +O(/A 4) = ~/A'~r  (37) --glr/ + (1 + Ar/)-~-~ 1 "  
n----1 

where w~ I) is an exponentially decaying function. A solution of the internal problem (15) is sought in the form 

,kin =/A2(X1 +/AX2 +/A2Xs +-.-)- (38) 
The role of solvability condition belongs to the first equality of (14), which establishes a relationship 

between the operators p(m) and the functions at the outer edge of the boundary layer. 
From (37) and (38) we find 

U~c 2 :Aexp(iO,)(  :Aexp(i01)( 
X, = -~--r/ ~ ,1 + At/), F ( 1 ) -  - 2 , 1 + At/). (39) u u '  
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Then, 

1 7 0  ~O-~r i 0 ur  2 r  ]~2 Uct ~ Or] ~ G92 IOq2X2 ~ O' Or] 2 L1X2 =- + U'cq~7 + Im (Aexp( ia{)) (1  + Aq) - ~_~'3 
(40) 

U,,,73 + w (2) + F(9"), X2 = 6 

where F (2) + w (2) = OF(1)/Oq + p(Ou'(2)/Oq = 0 (q = - A ) ,  X2 ~ r (q ~ ~ ) ,  and r are the terms a t /z  3 in 
(38). 

In the next order with respect to #, we have 
r r i l l  4 

L1X3 = 0, X3 = F(3) + w (3) + u c r /  (41) 
24 

Here F TM + w(3) = OF(2)/Orl + g(gw(a)/Orl = 0 (q = - A )  and X3 --+ r (r/--+ ~ ) .  
In constructing solutions for A >> 1 and A -~ 1 we use the  same principle, which is based on the 

difference in growth rate of the functions F (rn) and w(m) in the critical layer. For Yl "~ #, as noted above, 
it is not possible to split F(m) into f(m) and ~ ( ' )  in this region. It should be emphasized that  in the linear 
approximation (the case of an l~, layer) the solution obtained from (37)-(41) corresponds to that  obtained 
in [15] by direct expansion. Artificial elimination of the terms -,,#" In #, necessary for the analysis in [15], is 
performed automatical ly in this procedure. 

P a r a m e t r i c  A m p l i f i c a t i o n  of  S u b h a r m o n i c s .  The  CL type determines the evolution of wave 
disturbances and, because of the differences in the transverse structure of the vortex field, affects the 
interaction efficiency of various spect rum components.  The  determining mechanism for the LTT at small initial 
intensities of fluctuations (S-transition) is the parametric excitation of low-frequency background pulsations. 
The resonance in the tr iad tha t  includes a primary two-dimensional wave and a pair of spatially symmetric  
subharmonic waves determines the dominat ing mechanism of the S-transit ion [2-5]. It is of interest to examine 
how the formation of a nonlinear CL affects the resonance intensity. To clarify this issue, we consider the 
problem of parametr ic  interaction of subharmonic waves in a flow with the r determined by Eqs. (1) and 
(18). The averaging method  will be used [2-5]. The field of velocities is sought in the form 

v =  ( ~ y  r  - 0 r  +e2(Vl,V2, va)b(t)exp(iOt,)cos~z, 
(42) 

db 
- -  = 7Lb + eSLb*, OL = aLX -- WLt, 
dt 

where {vi} satisfy the three-dimensional Orr-Sommerfeld system with accuracy to O(e2,e) (e >> r WL + 
iTL = ~(aL, +Z). 

The coefficient [3] = ISL/A] characterizes the intensity of parametric coupling near the resonance 
Wl = 2WL and (~1 ~ 2aL. It is expressed in terms of solutions r and {vi} [2] calculated with allowance for the 
mean flow profile r (18). Figure 1 shows numerical values of ISI for various Re ia the case of substantially 
nonlinear [($, 7 /# )  << ~A/#  2] and quasi-linear ($ f> 7 / #  >> r  2) CLs which are asymptotically far from 
the wall (yl >> #). The  nonlinear CL structure corresponds to that  considered in [7] for steady nonlinear 
waves (A = const). Comparison with [7] for equilibrium values of A was used in computat ions  as a test. The 
curve for a nonlinear primary wave (see Fig. 1, curve 2) is valid for the parameters a l  and Re in the vicinity 
of the upper branch of the neutral curve of linear stability theory. The dashed part of curve 2 is a formal 
approximation in the region where A ~ 1. 

The computa t ion  results indicate a considerable decrease in the coupling coefficients and, hence, the 
rates of parametr ic  excitation of background subharmonics with a t ta inment  of a nonlinear CL regime. Taking 
into account the intense generation of higher harmonics and distortion of the mean flow that  occur in the 
nonlinear regime, the result obtained supports the hypothesis [2, 5] on the correlation between the LTT 
scenario in the boundary layer and the CL regime. Indeed, according to the estimates of weakly nonlinear 
theory, typical values a ,-- 10 -1, Re ,,, 10 4, and [S] ~ 10 yield a threshold ampl i tude Ax ~ 10 -3, for which 
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Fig. 1. Coefficients of parametric coupling ISI 
versus Re for linear (1) and nonlinear (2) primary 
waves: wl /Re = 115.10 -s ,  fl/o~L ~ 2, and I and 
II mark locations of the branches of the neutral 
stability curve for the primary waves. 

the contributions of viscous and unsteady effects become comparable: lu ~- (aRe) -1/a " It ~- Az[Sl /a .  In this 
case, l/v "~ 10 -3/2 < It, and the nonlinear CL regime can occur only for ~A > A~ in later stages of evolution. 
Specification of the initial amplitude close to the nonlinear CL threshold (A/v "~ 10 -2) can qualitatively 
modify the subsequent LTT pattern because of a decrease in the rate of resonant growth of low-frequency 
pulsations, which increases the t ime of attainment of an explosive regime. According to the experiments in [3], 
excess of the threshold value ,4jr "~ 10 -2 of the initial amplitude/i ,  actually corresponds to the K-transition 
conditions, which fit the obtained estimate. 

Finally, let us formulate the main conclusions. 
�9 A new procedure for solving the problem of evolution of wave disturbances in boundary-layer flows 

was developed. This technique is suitable for both linear and weakly nonlinear evolution and also for intense 
(beyond the reach of weakly nonlinear theory) pulsations. 

�9 The approach extends the results of the theory of disturbance evolution to the case of an arbitrary 
CL type and location with respect to the rigid wall. Wave interaction is taken into account. 

�9 Coupling coefficients that determine the rate of parametric growth of subharmonic three-dimensional 
pulsations are computed. It is found that  the growth rate of these pulsations decreases when they interact 
with a nonlinear primary wave, in contrast to a linear wave. 

�9 From this result and analytical estimates of threshold transformation parameters of CL regimes, it is 
concluded that there is a direct relationship between the latter and LTT scenarios in the boundary layer. In 
this respect, the S-transition corresponds to a weakly nonlinear regime, whereas the K-transition is caused 
by the formation of a nonlinear CL of the primary wave. 

�9 The above procedure of constructing evolution equations for two-dimensional, spatially periodic 
disturbances can be extended to the case of spatial-temporal evolution of three-dimensional waves. The main 
constraint of the method is connected with the requirement of fixed CL location during evolution. 

This work was supported by INTAS (Grant No. 93-2492) and performed within the framework of the 
research program of the International Center for Fundamental Physics in Moscow. 
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